首页> 外文OA文献 >Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials
【2h】

Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials

机译:海绵针作为无机-有机复合材料和生物材料生物制造的蓝图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results.
机译:尽管大多数形式的多细胞生物都已经形成了钙基骨架,但一些专门的生物体却用二氧化硅来补充其身体计划。但是,在最近的所有动物中,只有海绵(porifera门)能够在环境温度和压力下独特的反应过程中,通过酶介导的方式聚合二氧化硅,以生成大量的硅质骨骼元素(刺)。在该水化的生物矿化过程(即生物硅化)期间,无定形二氧化硅沉积在高度专门化的海绵池中,最终导致尺寸从微米到米不等的结构。螺旋线使海绵体具有结构稳定性,可以阻止捕食者,并且可以像光纤一样传输光。近年来,已经对这一奇特现象进行了全面研究,并在几种方法中,对分子背景进行了探索,以创建可用于新型生物启发性生物技术和生物医学应用的工具。因此,发现鞘脂形成是由硅酸盐酶介导的,并在细胞内开始。生成的二氧化硅纳米粒子融合并随后在中央蛋白丝周围形成同心层状层,该层由硅铝蛋白和支架蛋白silintaphin-1组成。一旦成长中的针刺被挤出到细胞外空间,它就会获得最终的大小和形状。再次,该过程由硅酸盐蛋白和silintaphin-1与其他分子(如半乳凝素和胶原蛋白)结合而介导。迄今为止产生的分子工具箱允许制造新型的微结构和纳米结构复合材料,从而有助于经济和可持续地合成具有独特特征的生物材料。在这种情况下,第一个受到生物启发的方法实现了重组硅酸盐蛋白和silintaphin-1在生物医学(生物硅介导的牙齿和骨骼缺损的再生)或微光学(光波导的体外合成)领域的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号